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Abstract The propagation of plane waves in a fiber-reinforced, anisotropic thermo-
elastic half-space proposed by Lord–Shulman under the effect of a magnetic field is
discussed. The problem has been solved numerically using a finite element method.
Numerical results for the temperature distribution, the displacement components, and
the thermal stress are given and illustrated graphically. Comparisons are made with
the results predicted by the theory of generalized thermoelasticity with one relaxation
time for different values of time. It is found that the reinforcement has a great effect
on the distribution of field quantities.
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Generalized magneto-thermoelasticity

1 Introduction

Lord and Shulman [1] introduced a theory of generalized thermoelasticity with one
relaxation time for an isotropic body. The theory was extended for an anisotropic
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body by Dhaliwal and Sherief [2]. In this theory, a modified law of heat conduction
including both the heat flux and its time derivatives replaces the conventional Fourier’s
law. The heat equation associated with this theory is hyperbolic and hence eliminates
the paradox of infinite speeds of propagation inherent in both coupled and uncoupled
theories of thermoelasticity. Erdem [3] derived the heat conduction equation for a
composite rigid material containing an arbitrary distribution of fibers. The impact of
earthquakes on the artificial structures is of great concern to engineers and architects.
During an earthquake and similar disturbances, a structure is excited into a more or less
violent vibration, with resulting oscillatory stresses, which depend upon both ground
vibration and physical properties of the structure. Most concrete structures need steel
reinforcing to some extent. The study of plane and surface wave propagation in ther-
mally conducting fiber-reinforced composites has applications in civil engineering and
geophysics.

Chadwick and Seet [4] and Singh and Sharma [5] have discussed the propagation
of plane harmonic waves in anisotropic thermoelastic materials. Singh [6] studied a
problem on wave propagation in an anisotropic generalized thermoelastic solid and
obtained a cubic equation, which gives the dimensional velocities of various plane
waves. Recently, a number of investigations [7–12] have been carried out using the
aforesaid theories of generalized thermoelasticity under the effect of a magnetic field.

Fiber-reinforced composites are used in a variety of structures due to their low
weight and high strength. The analysis of stress and deformation of fiber-reinforced
composite materials has been an important subject of solid mechanics for the last
three decades. Spencer [13], Pipkin [14], and Rogers [15,16] did pioneering works
on the subject. Sengupta and Nath [17] discussed the problem of surface waves in
fiber-reinforced anisotropic elastic media. Recently, Singh and Singh [18] discussed
the reflection of plane waves at the free surface of a fiber-reinforced elastic half-space.

Fiber-reinforced composites are widely used in engineering structures. A contin-
uum model is used to explain the mechanical properties of such materials. Fibers are
assumed as an inherent material property, rather than some form of inclusion in such
models [13]. In the case of an elastic solid reinforced by a series of parallel fibers, it
is usual to assume transverse isotropy. In the linear case, the associated constitutive
relations, and the related infinitesimal stress and strain components, have five material
constants as in Abbas [19] and Abbas and Othman [20].

In the present work, the (LS) theory is applied to study the influence of a magnetic
field, time, and reinforcement on the total deformation of a body and the interac-
tions with each other. The problem has been solved numerically using a finite element
method (FEM). Numerical results for the temperature distribution, displacement, the
stress components, and the induced magnetic field are represented graphically.

2 Formulation of the Problem

We consider the problem of a thermoelastic half-space (x ≥ 0). A magnetic field with
a constant intensity H = (0, 0, H0) acts parallel to the boundary plane (taken as the
direction of the z-axis). The surface of the half-space is subjected to a thermal shock
which is a function of y and t . Thus, all the quantities considered will be functions of
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the time variable t , and of the coordinates x and y. We begin our consideration with
linearized equations of electro-dynamics of a slowly moving medium [7]:

J= curl h − ε0Ė, (1)

curl E = −µ0ḣ, (2)

E = −µ0(u̇ × H), (3)

∇ · h = 0. (4)

These equations are supplemented by the displacement equations of the theory of
elasticity, taking into consideration the Lorentz force, to give

σi j, j + Fi = ρ ü i . (5)

Fi = µ0(J × H)i , (6)

The constitutive equation for a fiber-reinforced linearly thermoelastic anisotropic
medium whose preferred direction is that of a unit vector a is (Belfield et al. [21])

σi j = λekkδi j + 2µT ei j + α(akamekmδi j + ai aj ekk) + 2(µL − µT )(ai akek j

+aj akeki ) + βakamekmai aj − βi j (T − T0)δi j , i, j, k, m = 1, 2, 3, (7)

The heat conduction equation is

Ki j T,i j = ρce
(
Ṫ + t0T̈

)
+ T0βi j

(
u̇ i, j + t0 ü i, j

)
, i, j = 1, 2, 3. (8)

where µ0 is the magnetic permeability; ε0 is the electric permeability; u̇ is the parti-
cle velocity of the medium; h is the induced magnetic field vector; E is the induced
electric field vector, J is the current density vector; ρ is the mass density; u i is the
displacement vector components; ei j is the strain tensor; σi j is the stress tensor; T is
the temperature change of a material particle; T0 is the reference uniform temperature
of the body; βi j is the thermal elastic coupling tensor; ce is the specific heat at constant
strain; Ki j is the thermal conductivity; t0 is the relaxation time; δi j is the Kronecker
delta; λ, µT are elastic parameters; α,β, (µL − µT ) are reinforced anisotropic elastic
parameters, and a ≡ (a1, a2, a3), and a2

1 + a2
2 + a2

3 = 1. The comma notation is used
for spatial derivatives, and the superimposed dot represents time differentiation.

We consider the problem of a fiber-reinforced anisotropic half-space (x ≥ 0). All
the considered functions will be depend on the time t and the coordinates x and y.
Thus, the displacement vector u i will have the components,

u = u x = u (x, y, t), v = u y = v(x, y, t), w = u z = 0. (9)

We choose the fiber direction as a ≡ (1, 0, 0) so that the preferred direction is the
x-axis, Eqs. 5–7 simplify, as given below,

σxx = (λ + 2α + 4µL − 2µT + β)
∂u
∂x

+ (λ + α)
∂v

∂y
− β11(T − T0), (10)

123


